Dr. Dwi Ajiatmo, ST., MT. Winarti, S.Kom., M.Kom.

MODEL, TEORI, DAN KERANGKA KERJA dalam Interaksi Manusia dan Komputer (HCI)

Pendekatan Multidisipliner

MODEL, TEORI, DAN KERANGKA KERJA dalam Interaksi Manusia dan Komputer (HCI)

Pendekatan Multidisipliner

Dalam dunia digital yang semakin terhubung, pemahaman mendalam tentang bagaimana manusia berinteraksi dengan teknologi menjadi sangat krusial. Buku ini menghadirkan pendekatan multidisipliner dalam kajian *Human-Computer Interaction (HCI)*, menggabungkan prinsip-prinsip dari ilmu komputer, psikologi kognitif, desain antarmuka, serta perspektif sosial dan budaya pengguna.

Disusun secara sistematis dalam 12 bab, buku ini membahas mulai dari model interaksi klasik seperti Norman, GOMS, dan KLM, hingga perkembangan mutakhir dalam desain berbasis emosi, pengalaman pengguna (User Experience), realitas virtual, interaksi multimodal, dan kecerdasan buatan. Setiap bab dilengkapi dengan tujuan pembelajaran, paparan teori, latihan soal, studi kasus aplikatif, serta soal evaluasi, menjadikan buku ini sangat tepat sebagai buku ajar dalam kurikulum pendidikan tinggi berbasis Outcome-Based Education (OBE).

Dengan gaya penulisan akademik yang jelas dan aplikatif, buku ini ditujukan bagi mahasiswa, dosen, peneliti, maupun praktisi yang terlibat dalam perancangan dan evaluasi sistem interaktif berbasis manusia. Kehadiran buku ini diharapkan dapat membekali pembaca dengan pemahaman konseptual dan keterampilan praktis dalam menciptakan teknologi yang lebih inklusif, efisien, dan berpusat pada pengguna.

MODEL, TEORI, DAN KERANGKA KERJA DALAM INTERAKSI MANUSIA DAN KOMPUTER (HCI): PENDEKATAN MULTIDISIPLINER

Dr. Dwi Ajiatmo, ST., MT. Winarti, S.Kom., M.Kom.

i

MODEL, TEORI, DAN KERANGKA KERJA DALAM INTERAKSI MANUSIA DAN KOMPUTER (HCI): PENDEKATAN MULTIDISIPLINER

Penulis : Dr. Dwi Ajiatmo, ST., MT.

Winarti, S.Kom., M.Kom.

Editor : Dr. Henny Dwijayani, SE., M.Si.

Desain Sampul: Firman Isma'il

Tata Letak : Rizki Rose Mardiana

ISBN : 978-634-248-294-0

Diterbitkan oleh : EUREKA MEDIA AKSARA, AGUSTUS 2025

ANGGOTA IKAPI JAWA TENGAH

NO. 225/JTE/2021

Redaksi:

Jalan Banjaran, Desa Banjaran RT 20 RW 10 Kecamatan Bojongsari

Kabupaten Purbalingga Telp. 0858-5343-1992

Surel: eurekamediaaksara@gmail.com

Cetakan Pertama: 2025

All right reserved

Hak Cipta dilindungi undang-undang

Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apapun dan dengan cara apapun, termasuk memfotokopi, merekam, atau dengan teknik perekaman lainnya tanpa seizin tertulis dari penerbit.

KATA PENGANTAR

Puji syukur kepada hadirat Tuhan Yang Maha Esa atas seluruh rahmat dan karunia-Nya sehingga buku ajar ini dapat disusun dan disahkan dengan judul *Model, Teori, dan Kerangka Kerja pada Interaksi Manusia dan Komputer (HCI): Pendekatan Multidisipliner*. Buku ini disusun sebagai pedoman komprehensif untuk mahasiswa, dosen, peneliti, dan praktisi yang berkeinginan memahami landasan konseptual dan praktis perancangan serta

Dalam era digital yang ditandai dengan penetrasi teknologi ke hampir seluruh aspek kehidupan, pemahaman tentang bagaimana manusia berinteraksi dengan sistem komputasi menjadi semakin penting. Oleh karena itu, buku ini tidak hanya menyajikan teori-teori klasik dalam HCI, namun juga membahas perkembangan mutakhir, seperti desain berbasis pengalaman pengguna (UX), kecerdasan buatan, realitas virtual dan augmentasi, serta pertimbangan etika dan inklusivitas dalam desain interaksi.

Prestise buku ini berada pada cara mendekati multidisipliner yang menjumlahkan pengalaman psikologi kognitif, komputer science, design, sosiology, dan antropologi. Bila suatu bab diakhiri dengan kompetensi belajar atau laporan hasil belajar di suatu perkara. Dibandingkan dengan edisi sebelumnya yang perlu disertai dengan kom

Kami menyampaikan terima kasih kepada semua pihak yang telah memberikan kontribusi dalam penyusunan buku ini, termasuk rekan sejawat, editor, serta para mahasiswa yang telah memberikan masukan konstruktif dalam proses pengembangan materi. Harapan kami, buku ajar ini dapat menjadi rujukan utama dalam mata kuliah Interaksi Manusia dan Komputer serta menjadi inspirasi dalam menciptakan desain teknologi yang lebih manusiawi, inklusif, dan berkelanjutan.

Jombang, Juli 2025 **Penulis**

Dr. Dwi Ajiatmo, ST., MT. Winarti, S.Kom., M.Kom.

DAFTAR ISI

KATA P	ENGANTAR	iii
DAFTA	R ISI	iv
	R GAMBAR	
DAFTA	R SINGKATAN DAN AKRONIM	xi
BAB 1	PENGANTAR INTERAKSI MANUSIA DAN	
	KOMPUTER (HCI)	1
	A. Struktur Buku Ajar dan Tujuan Pembelajaran	1
	B. Definisi dan Ruang Lingkup Interaksi Manusia	
	dan Komputer (HCI)	1
	C. Sejarah Singkat dan Evolusi HCI	2
	D. Mengapa Model, Teori, dan Kerangka Kerja	
	Penting dalam HCI?	5
	E. HCI sebagai Bidang Multidisipliner: Kontribusi	
	dari Psikologi, Ilmu Komputer, Desain, Sosiologi,	
	dan Antropologi	5
	F. Latihan Soal	6
	G. Studi Kasus: Aplikasi Media Sosial Populer	7
	H. Soal Evaluasi	7
	I. Sumber Pustaka/Referensi	8
BAB 2	MODEL HUMAN INFORMATION PROCESSING	
	(HIP)	9
	A. Pengertian Model dalam Konteks HCI	9
	B. Model Human Information Processing	10
	C. Model GOMS (Goals, Operators, Methods, Selection	
	Rules)	10
	D. Implikasi Model HIP dalam Desain	12
	E. Latihan Soal	13
	F. Studi Kasus: Analisis Efisiensi Entri Data	
	pada Sistem POS (Point of Sale)	14
	G. Soal Evaluasi	14
	H. Sumber Pustaka/Referensi	15
BAB 3	MODEL SIKLUS INTERAKSI DAN MODEL	
	MENTAL	16
	A. Pengantar Model Siklus Interaksi	16
	B. Model Norman (Execution-Evaluation Cycle)	16

	C. Model Abowd dan Beale (Interaction Framework)	17
	D. Model Konseptual dan Mental (Conceptual	
	and Mental Models)	19
	E. Implikasi Model Siklus Interaksi dan Model	
	Mental dalam Desain	20
	F. Latihan Soal	
	G. Studi Kasus: Desain Antarmuka Mesin Kopi	
	Otomatis	21
	H. Soal Evaluasi	22
	I. Sumber Pustaka/Referensi	23
BAB 4	TEORI KOGNITIF: ATENSI, PERSEPSI, DAN	
	MEMORI	24
	A. Pengantar Psikologi Kognitif untuk HCI	24
	B. Atensi dan Desain Antarmuka	24
	C. Persepsi dan Desain Antarmuka	25
	D. Memori Manusia dan Pengaruhnya pada Desain	
	Navigasi	27
	E. Implikasi Atensi, Persepsi, dan Memori dalam	
	Desain HCI	28
	F. Latihan Soal	28
	G. Studi Kasus: Desain Antarmuka Aplikasi	
	Streaming Video	29
	H. Soal Evaluasi	29
	I. Sumber Pustaka/Referensi	31
BAB 5	TEORI KOGNITIF: BEBAN KOGNITIF,	
	PEMECAHAN MASALAH,	
	DAN PEMBELAJARAN	32
	A. Beban Kognitif (Cognitive Load) dan Desain yang	
	Efisien	32
	B. Teori Pemecahan Masalah dan Pengambilan	
	Keputusan	33
	C. Teori Pembelajaran dan Pengguna Baru	35
	D. Latihan Soal	36
	E. Studi Kasus: Aplikasi Pembelajaran Bahasa	
	Online	37

	F. Soal Evaluasi	37
	G. Sumber Pustaka/Referensi	38
BAB 6	TEORI SOSIAL DAN KOMUNIKASI MANUSIA-	
	KOMPUTER	39
	A. Pengantar Sosiologi dan Antropologi dalam HCI	39
	B. Teori Aktivitas (Activity Theory) dan Konteks	
	Penggunaan	39
	C. Teori Jaringan Aktor/Actor-Network Theory	
	(ANT)	40
	D. Komunikasi Manusia-Komputer dan Interaksi	
	Sosial	41
	E. Desain untuk Kolaborasi dan Kerja Sama/	
	(Computer-Supported Cooperative Work (CSCW)	42
	F. Budaya dan Organisasi: Dampaknya pada Adopsi	
	Teknologi	43
	G. Latihan Soal	44
	H. Studi Kasus: Implementasi Sistem E-voting	
	di Komunitas Lokal	45
	I. Soal Evaluasi	45
	J. Sumber Pustaka/Referensi	
BAB 7	TEORI AFEKTIF DAN DESAIN EMOSIONAL	48
	A. Pengantar Emosi dan Afeksi dalam HCI	48
	B. Teori Desain Emosional (Emotional Design)	
	oleh Don Norman	48
	C. Pengukuran Emosi dalam HCI	50
	D. Desain untuk Emosi Positif: Kegembiraan,	
	Kepercayaan, dan Kesenangan	51
	E. Mengelola Emosi Negatif: Frustrasi, Kecemasan,	
	dan Kebosanan	52
	F. Latihan Soal	53
	G. Studi Kasus: Aplikasi Pelacakan Tidur (Sleep	
	Tracking App)	
	H. Soal Evaluasi	54
	I. Sumber Pustaka/Referensi	55

BAB 8	PENGALAMAN PENGGUNA/USER	
	EXPERIENCE (UX) DAN TEORI ALIRAN	57
	A. Konsep Pengalaman Pengguna/User Experience	
	(UX)	57
	B. Teori Aliran (Flow Theory) dalam Interaksi yang	
	Menarik	58
	C. Desain yang Menyenangkan (Pleasurable Design)	
	dan Estetika	59
	D. Pengukuran dan Evaluasi Pengalaman Pengguna.	60
	E. Hubungan antara Usabilitas, Desain Emosional,	
	dan Pengalaman Pengguna	61
	F. Latihan Soal	62
	G. Studi Kasus: Aplikasi Kebugaran (Fitness App)	62
	H. Soal Evaluasi	63
	I. Sumber Pustaka/Referensi	64
BAB 9	KERANGKA KERJA DESAIN BERPUSAT	
	PADA PENGGUNA (UCD)	65
	A. Pengertian Kerangka Kerja dalam HCI	65
	B. Filosofi dan Prinsip Desain Berpusat pada	
	Pengguna (User Centered Design)	65
	C. Tahapan Proses UCD	67
	D. Praktik Terbaik untuk Desain Berpusat pada	
	Pengguna (UCD) yang Efektif	75
	E. Metode dalam UCD: Persona, Skenario, dan	
	Analisis Tugas	76
	F. Kerangka Kerja Desain Berbasis Bukti	
	(Evidence-Based Design)	77
	G. Latihan Soal	77
	H. Studi Kasus: Desain Ulang Situs Web	
	Perpustakaan Universitas	78
	I. Soal Evaluasi	79
	J. Sumber Pustaka/Referensi	80
BAB 10	KERANGKA KERJA EVALUASI USABILITAS	81
	A. Pengantar Evaluasi Usabilitas	81
	B. Metode Inspeksi Usabilitas	81

	C. Pengujian Usabilitas dengan Pengguna	
	(User Testing)	85
	D. Metrik Usabilitas: Kuantitatif dan Kualitatif	86
	E. Pelaporan dan Prioritisasi Temuan Usabilitas	87
	F. Latihan Soal	88
	G. Studi Kasus: Evaluasi Usabilitas Aplikasi	
	Pemesanan Makanan Online	88
	H. Soal Evaluasi	89
	I. Sumber Pustaka/Referensi	90
BAB 11	DESAIN INKLUSIF, AKSESIBILITAS, DAN	
	ETIKA DALAM HCI	91
	A. Desain Inklusif (Inclusive Design)	91
	B. Aksesibilitas (Accessibility) dalam HCI	92
	C. Metode Pengukuran Aksesibilitas	
	D. Etika dalam HCI: Privasi, Keamanan, dan	
	Tanggung Jawab Sosial	93
	E. Kerangka Kerja Etika dalam Desain HCI	
	F. Latihan Soal	96
	G. Studi Kasus: Desain Sistem Pengenalan Wajah	
	untuk Keamanan Publik	96
	H. Soal Evaluasi	97
	I. Sumber Pustaka/Referensi	98
BAB 12	TEKNOLOGI BARU, STUDI KASUS, DAN ARAH	I
	MASA DEPAN HCI	99
	A. HCI dalam Era Komputasi Ubiquitous dan	
	Pervasive	99
	B. Interaksi Multimodal dan Natural User Interfaces	
	(NUI)	100
	C. Model dan Teori untuk Realitas Virtual (VR)	
	dan Realitas Tertambah (AR)	101
	D. HCI dan Kecerdasan Buatan (AI): Tantangan	
	dan Peluang	102
	E. Arah Masa Depan HCI	103
	F. Latihan Soal	
	G. Studi Kasus: Sistem Navigasi Mobil Otonom	

H. Soal Evaluasi	105
I. Sumber Pustaka/Referensi	107
GLOSARIUM ISTILAH	108
INDEKS	112
TENTANG PENULIS	114
TENTANG EDITOR	116

DAFTAR GAMBAR

Gambar 1.1	Survei tentang Evolusi Bidang HCI	4
Gambar 4.1	Desain Antar Muka Pengguna (User Interface)	.26
Gambar 8.1	Desain Mempertimbangkan Kebutuhan	
	Pengguna	.58
Gambar 9.1	Desain Berpusat pada Pengguna (UCD)	.66
Gambar 9.2	Proses Desain Berpusat pada Pengguna (UCD)	.68
Gambar 10.1	Evaluasi Heuristik	.83
Gambar 10.2	Inspeksi Kegunaan pada Wireframe	.84

DAFTAR SINGKATAN DAN AKRONIM

Singkatan	Kepanjangan	Penjelasan
AI	Artificial Intelligence	Kecerdasan buatan yang digunakan untuk membuat sistem adaptif dan cerdas dalam interaksi manusia dan komputer.
ANT	Actor-Network Theory	Teori sosial yang melihat manusia dan non-manusia (termasuk teknologi) sebagai aktor dalam jaringan.
AR	Augmented Reality	Teknologi yang menggabungkan elemen dunia nyata dan digital secara langsung.
CLI	Command Line Interface	Antarmuka berbasis teks di mana pengguna mengetik perintah langsung ke sistem.
CSCW	Computer- Supported Cooperative Work	Studi dan pengembangan sistem untuk mendukung kerja sama antar pengguna melalui komputer.
GOMS	Goals, Operators, Methods, Selection rules	Model analitik tugas dalam interaksi manusia-komputer.
GUI	Graphical User Interface	Antarmuka pengguna berbasis grafis (ikon, jendela, menu) yang memudahkan interaksi visual.
HIP	Human Information Processing	Model yang menggambarkan bagaimana manusia memproses informasi dalam konteks interaksi dengan komputer.
НСІ	Human- Computer Interaction	Bidang studi yang fokus pada desain, evaluasi, dan implementasi sistem interaktif bagi pengguna manusia.

Singkatan	Kepanjangan	Penjelasan
	Keystroke-Level	Model yang mengukur waktu
KLM	Model	interaksi pengguna berdasarkan
	14101101	tindakan fisik dan kognitif.
	Mental	Operator dalam KLM yang
M	Preparation Preparation	menyatakan waktu pengguna
	Ттеритипоп	berpikir sebelum bertindak.
	Natural User	Antarmuka berbasis interaksi
NUI	Interface	alami seperti suara, gerak tubuh,
	interjace	atau sentuhan.
		Operator dalam KLM untuk
P	Pointing	menunjuk elemen menggunakan
•	1 oming	mouse atau perangkat input
		lainnya.
	Point of Sale	Sistem komputerisasi yang
POS		digunakan dalam transaksi
		penjualan ritel.
	System Response	Operator dalam KLM untuk
R		waktu yang dibutuhkan sistem
		dalam merespons tindakan
		pengguna.
	Standard	Prosedur operasi standar,
SOP	Operating	kadang disebut dalam studi
	Procedure	kasus terkait interaksi pengguna.
	Tangible User	Antarmuka fisik yang
TUI	Interface	memungkinkan interaksi
	, 	langsung melalui objek nyata.
		Pendekatan desain yang
UCD	User-Centered	menempatkan kebutuhan
	Design	pengguna sebagai pusat
		perhatian.
	** *	Bagian dari sistem tempat
UI	UI User Interface	interaksi antara manusia dan
		komputer terjadi.

Singkatan	Kepanjangan	Penjelasan
		Pengalaman total pengguna saat
UX	User Experience	berinteraksi dengan sistem,
UX		mencakup aspek emosional dan
		praktis.
		Teknologi yang menciptakan
VR	Virtual Reality	lingkungan buatan imersif
		melalui komputer.
		Operator dalam KLM,
W	Hamina	menunjukkan waktu
VV	Homing	perpindahan tangan antara
		keyboard dan mouse.

MODEL, TEORI, DAN KERANGKA KERJA DALAM INTERAKSI MANUSIA DAN KOMPUTER (HCI): PENDEKATAN MULTIDISIPLINER

Dr. Dwi Ajiatmo, ST., MT. Winarti, S.Kom., M.Kom.

1

PENGANTAR INTERAKSI MANUSIA DAN KOMPUTER (HCI)

A. Struktur Buku Ajar dan Tujuan Pembelajaran

Buku ajar ini dirancang untuk memberikan pemahaman komprehensif tentang model, teori, dan kerangka kerja yang mendasari Interaksi Manusia dan Komputer (HCI) dari perspektif multidisipliner. Setiap bab akan membahas konsepkonsep kunci, memberikan contoh, dan menguraikan implikasinya dalam desain dan evaluasi sistem interaktif.

Tujuan Pembelajaran

Setelah menyelesaikan buku ajar ini, pembaca diharapkan mampu: Memahami definisi, ruang lingkup, dan sejarah HCI. Mengidentifikasi dan menjelaskan model-model fundamental interaksi manusia dan komputer. Menerapkan teori-teori kognitif, sosial, dan afektif dalam analisis dan desain interaksi. Menggunakan kerangka kerja desain dan evaluasi HCI untuk menciptakan sistem yang berpusat pada pengguna. Menganalisis tantangan dan peluang HCI dalam konteks teknologi baru. Mengaplikasikan pengetahuan HCI dalam studi kasus dan proyek praktis.

B. Definisi dan Ruang Lingkup Interaksi Manusia dan Komputer (HCI)

Interaksi Manusia dan Komputer (HCI) adalah disiplin ilmu yang mempelajari desain, evaluasi, dan implementasi sistem komputasi interaktif untuk digunakan oleh manusia, serta studi tentang fenomena utama yang mengelilinginya.

2

MODEL HUMAN INFORMATION PROCESSING (HIP)

A. Pengertian Model dalam Konteks HCI

Dalam konteks Interaksi Manusia dan Komputer (HCI), sebuah model adalah representasi abstrak dan disederhanakan dari suatu sistem, proses, atau fenomena yang kompleks. Model berfungsi sebagai alat bantu untuk memahami, menganalisis, memprediksi, dan merancang interaksi antara manusia dan komputer. Mereka membantu desainer dan peneliti untuk fokus pada aspek-aspek kunci dari interaksi tanpa harus terbebani oleh semua detail yang ada. Model dapat bersifat deskriptif (menjelaskan bagaimana sesuatu bekerja) atau preskriptif (memberikan panduan tentang bagaimana sesuatu seharusnya dirancang atau dilakukan).

Model-model dalam HCI sering kali berupaya menangkap berbagai aspek, seperti:

- **1. Model Pengguna:** Bagaimana manusia memproses informasi, membuat keputusan, dan melakukan tindakan.
- **2. Model Sistem:** Bagaimana sistem komputasi beroperasi dan merespons input pengguna.
- **3. Model Interaksi:** Bagaimana pengguna dan sistem saling memengaruhi dan berkomunikasi.
- **4. Model Tugas:** Struktur dan urutan tugas yang dilakukan pengguna untuk mencapai tujuan.

3

MODEL SIKLUS INTERAKSI DAN MODEL MENTAL

A. Pengantar Model Siklus Interaksi

Model siklus interaksi menggambarkan proses bolakbalik antara pengguna dan sistem. Mereka membantu kita memahami bagaimana tindakan pengguna diterjemahkan oleh sistem dan bagaimana respons sistem dipahami oleh pengguna. Model-model ini sangat penting untuk mengidentifikasi potensi kesenjangan komunikasi antara manusia dan komputer, yang seringkali menjadi sumber kesalahan dan frustrasi. Dengan memahami siklus ini, desainer dapat merancang antarmuka yang lebih transparan dan prediktif.

B. Model Norman (Execution-Evaluation Cycle)

Don Norman mengusulkan model siklus interaksi yang berfokus pada tujuh tahapan tindakan yang dilakukan pengguna untuk mencapai tujuan mereka. Model ini menyoroti kesenjangan antara niat pengguna dan apa yang sebenarnya terjadi pada sistem, yang dikenal sebagai Kesenjangan Eksekusi (Gulf of Execution) dan Kesenjangan Evaluasi (Gulf of Evaluation).

Tahapan Eksekusi:

- **1. Membentuk Tujuan (**Forming the Goal**)**, Pengguna memutuskan apa yang ingin mereka capai (misalnya, mengirim email).
- **2. Membentuk Niat** (*Forming the Intention*), Pengguna memutuskan tindakan apa yang akan mereka lakukan untuk mencapai tujuan (misalnya, mengklik tombol "Kirim").

- c. Mempercepat waktu respons sistem
- d. Menambah fitur baru pada antarmuka

I. Sumber Pustaka/Referensi

- Abowd, G. D., & Beale, R. (1991). Users, systems, and interfaces: A framework for understanding HCI. In Proceedings of the 1991 ACM SIGCHI Conference on Human Factors in Computing Systems (pp. 11-1a). ACM.
- Carroll, J. M., & Olson, J. R. (1988). Mental models in human-computer interaction. In *Handbook of human-computer interaction* (pp. 45-a5). North-Holland.
- Norman, D. A. (1988). *The Psychology of Everyday Things*. Basic Books. (Kemudian diterbitkan ulang sebagai *The Design of Everyday Things*).
- Preece, J., Rogers, Y., & Sharp, H. (2015). *Interaction Design: Beyond Human-Computer Interaction* (4th ed.). John Wiley & Sons.

4

TEORI KOGNITIF: ATENSI, PERSEPSI, DAN MEMORI

A. Pengantar Psikologi Kognitif untuk HCI

Psikologi kognitif adalah cabang psikologi yang mempelajari proses mental seperti perhatian, persepsi, memori, bahasa, pemecahan masalah, dan pengambilan keputusan. Dalam konteks HCI, pemahaman tentang psikologi kognitif sangat fundamental karena interaksi manusia dengan komputer pada dasarnya adalah proses kognitif. Desainer yang memahami bagaimana pikiran manusia bekerja dapat menciptakan antarmuka yang lebih intuitif, efisien, dan mudah dipelajari. Teori-teori kognitif membantu kita memprediksi bagaimana pengguna akan berinteraksi dengan sistem, mengidentifikasi potensi kesulitan, dan merancang solusi yang selaras dengan kemampuan dan keterbatasan kognitif manusia.

B. Atensi dan Desain Antarmuka

Atensi adalah kemampuan untuk memusatkan sumber daya kognitif pada informasi tertentu sambil mengabaikan informasi lain. Dalam desain antarmuka, penting untuk mengarahkan atensi pengguna ke informasi yang paling relevan dan penting. Jika antarmuka terlalu ramai atau tidak terstruktur, atensi pengguna akan terpecah, menyebabkan kesulitan dalam menemukan informasi atau menyelesaikan tugas.

I. Sumber Pustaka/Referensi

- Koffka, K. (1935). Principles of Gestalt psychology. Harcourt, Brace.
- Miller, G. A. (195a). The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, a3(2), 81–97.
- Norman, D. A. (2013). The Design of Everyday Things: Revised and Expanded Edition. Basic Books.
- Preece, J., Rogers, Y., & Sharp, H. (2015). *Interaction Design: Beyond Human-Computer Interaction* (4th ed.). John Wiley & Sons.
- Wickens, C. D., Lee, J. D., Liu, Y., & Gordon-Becker, S. (2004). *An Introduction to Human Factors Engineering*. Pearson Prentice Hall.

5

TEORI KOGNITIF: BEBAN KOGNITIF, PEMECAHAN MASALAH, DAN PEMBELAJARAN

A. Beban Kognitif (Cognitive Load) dan Desain yang Efisien

Beban kognitif mengacu pada jumlah total kapasitas memori kerja yang digunakan pada waktu tertentu. Memori kerja manusia memiliki kapasitas yang terbatas, dan ketika beban kognitif melebihi kapasitas ini, kinerja dapat menurun, kesalahan meningkat, dan pengguna dapat merasa frustrasi. Teori Beban Kognitif (*Cognitive Load Theory*) mengidentifikasi tiga jenis beban kognitif:

- 1. Beban Kognitif Intrinsik (Intrinsic Cognitive Load), Beban yang melekat pada kompleksitas materi itu sendiri. Ini ditentukan oleh interaksi antara elemen-elemen informasi yang harus diproses secara bersamaan. Misalnya, memahami konsep baru yang rumit atau memecahkan masalah matematika yang kompleks. Beban intrinsik tidak dapat dihilangkan, tetapi dapat dikelola dengan memecah informasi menjadi "chunks" yang lebih kecil atau menyajikan prasyarat terlebih dahulu.
- 2. Beban Kognitif Ekstrinsik (Extraneous Cognitive Load), Beban yang disebabkan oleh cara informasi disajikan atau interaksi yang tidak efisien. Ini adalah beban yang tidak relevan dengan pembelajaran atau penyelesaian tugas yang sebenarnya. Contohnya termasuk antarmuka yang berantakan, navigasi yang membingungkan, instruksi yang tidak jelas, atau informasi yang tidak perlu. Beban ekstrinsik harus diminimalkan melalui desain yang baik.

TEORI SOSIAL DAN KOMUNIKASI MANUSIA-KOMPUTER

A. Pengantar Sosiologi dan Antropologi dalam HCI

Selain aspek kognitif individu, interaksi manusia dan komputer juga sangat dipengaruhi oleh konteks sosial dan organisasional. Sosiologi dan antropologi menyediakan lensa untuk memahami bagaimana teknologi digunakan dalam kelompok, komunitas, dan organisasi, serta bagaimana norma, nilai, dan budaya memengaruhi adopsi dan penggunaan sistem interaktif. Pendekatan ini melampaui fokus pada pengguna untuk mempertimbangkan dinamika antarmanusia yang dimediasi oleh teknologi, serta dampak teknologi pada struktur sosial dan budaya. Ini adalah kunci untuk merancang sistem yang tidak hanya fungsional tetapi juga relevan secara sosial dan budaya.

B. Teori Aktivitas (Activity Theory) dan Konteks Penggunaan

Teori Aktivitas (Activity Theory) adalah kerangka kerja filosofis dan analitis yang berasal dari psikologi dan sosiologi Rusia. Dalam HCI, teori ini digunakan untuk menganalisis sistem aktivitas manusia yang kompleks, di mana interaksi dengan teknologi adalah bagian integral. Teori ini menekankan bahwa tindakan individu tidak terjadi dalam isolasi, melainkan selalu tertanam dalam konteks aktivitas yang lebih besar, yang memiliki tujuan, motif, dan komunitas.

- Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. Oxford University Press.
- Short, J., Williams, E., & Christie, B. (197a). The social psychology of telecommunications. John Wiley & Sons.

7

TEORI AFEKTIF DAN DESAIN EMOSIONAL

A. Pengantar Emosi dan Afeksi dalam HCI

Secara tradisional, HCI cenderung berfokus pada aspek kognitif dan fungsional dari interaksi. Namun, semakin disadari bahwa emosi dan afeksi memainkan peran krusial dalam bagaimana pengguna berinteraksi dengan teknologi dan bagaimana mereka merasakan pengalaman tersebut. Afeksi adalah istilah umum yang mencakup emosi, suasana hati, dan perasaan. Emosi adalah respons psikofisiologis yang intens dan berumur pendek terhadap suatu peristiwa (misalnya, senang, marah, frustrasi), sementara suasana hati lebih difus dan berdurasi lebih lama. Memahami dan merancang untuk afeksi menjadi penting karena produk yang memicu emosi positif cenderung lebih disukai, lebih sering digunakan, dan lebih mudah dipelajari. Desain yang mengabaikan emosi dapat menyebabkan frustrasi, penolakan, atau bahkan pengalaman negatif yang mendalam.

B. Teori Desain Emosional (Emotional Design) oleh Don Norman

Don Norman, dalam bukunya *Emotional Design: Why We Love (or Hate) Everyday Things*, mengemukakan bahwa desain yang baik tidak hanya tentang fungsionalitas dan usabilitas, tetapi juga tentang emosi. Ia mengidentifikasi tiga tingkat desain yang memengaruhi respons emosional:

Tractinsky, N. (1997). Aesthetics and apparent usability: Some empirical evidence. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 115-122). ACM.

8

PENGALAMAN PENGGUNA/ USER EXPERIENCE (UX) DAN TEORI ALIRAN

A. Konsep Pengalaman Pengguna/User Experience (UX)

User Experience (UX) adalah istilah luas yang mencakup semua aspek interaksi pengguna dengan produk, layanan, atau sistem. Ini bukan hanya tentang antarmuka, tetapi tentang bagaimana pengguna merasa sebelum, selama, dan setelah menggunakan produk. UX bersifat subjektif, holistik, dan dinamis, berkembang seiring waktu dan interaksi. UX yang baik adalah hasil dari desain yang mempertimbangkan kebutuhan, tujuan, emosi, dan konteks pengguna secara menyeluruh. Ini melampaui sekadar fungsionalitas dan usabilitas untuk menciptakan pengalaman yang bermakna dan memuaskan.

Komponen kunci dari UX meliputi:

- 1. Usabilitas (*Usability*): Seberapa mudah dan efisien produk dapat digunakan untuk mencapai tujuan tertentu (efektivitas, efisiensi, kepuasan).
- **2. Aksesibilitas** (*Accessibility*): Seberapa mudah produk dapat digunakan oleh orang dengan berbagai kemampuan, termasuk penyandang disabilitas.
- **3. Daya Tarik** (*Desirability*): Seberapa menarik dan menyenangkan produk bagi pengguna, baik secara visual maupun interaktif. Ini terkait erat dengan desain emosional.
- **4. Kredibilitas** (*Credibility*): Seberapa terpercaya dan dapat diandalkan produk tersebut, termasuk keamanan dan privasi data. Pengguna harus merasa aman dan yakin saat menggunakan produk.

9

KERANGKA KERJA DESAIN BERPUSAT PADA PENGGUNA (UCD)

A. Pengertian Kerangka Kerja dalam HCI

Dalam konteks HCI, kerangka kerja (framework) adalah struktur konseptual atau metodologi yang menyediakan panduan sistematis untuk proses desain, pengembangan, dan evaluasi sistem interaktif. Berbeda dengan model yang cenderung menjelaskan fenomena, atau teori yang menjelaskan mengapa sesuatu terjadi, kerangka kerja memberikan serangkaian langkah, prinsip, atau alat yang dapat digunakan untuk mencapai tujuan praktis. Kerangka kerja membantu desainer dan peneliti untuk bekerja secara terstruktur, memastikan bahwa semua aspek penting dipertimbangkan, dan memfasilitasi komunikasi dalam tim. Mereka menyediakan peta jalan untuk proses desain, memastikan konsistensi dan kualitas.

B. Filosofi dan Prinsip Desain Berpusat pada Pengguna (*User Centered Design*)

Desain Berpusat pada Pengguna *User Centered Design* (UCD) adalah filosofi dan kerangka kerja desain yang menempatkan pengguna sebagai fokus utama di setiap tahap proses desain dan pengembangan. Tujuannya adalah untuk menciptakan produk yang sangat sesuai dengan kebutuhan, keinginan, dan kemampuan pengguna.

UCD bersifat iteratif, yang berarti prosesnya melibatkan siklus berulang dari desain, pengujian, dan perbaikan. Pendekatan ini mengakui bahwa pengguna adalah ahli dalam

- c. Skenario
- d. Pengujian Usabilitas

J. Sumber Pustaka/Referensi

- Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014). About Face: The Essentials of Interaction Design (4th ed.). Wiley.
- Gould, J. D., & Lewis, C. (1985). Designing for usability: Key principles and what designers think. Communications of the ACM, 28(3), 300-311.
- ISO 9241-210:2019. Ergonomics of human-system interaction Part 210: Human- centred design for interactive systems. International Organization for Standardization.
- Rubin, J., & Chisnell, D. (2008). Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests (2nd ed.). John Wiley & Sons.
- Wickens, C. D., Lee, J. D., Liu, Y., & Gordon-Becker, S. (2004). An Introduction to Human Factors Engineering. Pearson Prentice Hall.

BAB KERANGKA KERJA EVALUASI USABILITAS

A. Pengantar Evaluasi Usabilitas

Evaluasi usabilitas adalah proses sistematis untuk mengukur seberapa mudah dan efektif suatu produk dapat digunakan oleh pengguna. Ini adalah komponen krusial dalam siklus desain berpusat pada pengguna (UCD), karena memungkinkan desainer untuk mengidentifikasi masalah usabilitas, memvalidasi keputusan desain, dan memastikan bahwa produk memenuhi kebutuhan pengguna. Evaluasi dapat dilakukan pada berbagai tahap pengembangan, mulai dari prototipe awal hingga produk yang sudah jadi. Tujuan utamanya adalah untuk meningkatkan kualitas interaksi dan pengalaman pengguna.

B. Metode Inspeksi Usabilitas

Metode inspeksi usabilitas adalah teknik evaluasi di mana para ahli (evaluator) memeriksa antarmuka pengguna untuk mengidentifikasi masalah usabilitas, tanpa pengguna akhir secara langsung. Metode ini seringkali lebih cepat dan lebih murah dibandingkan pengujian dengan pengguna, dan dapat digunakan pada tahap awal desain ketika prototipe masih kasar.

1. Heuristic Evaluation

Evaluasi Heuristik adalah metode inspeksi usabilitas di mana sekelompok ahli (evaluator) memeriksa antarmuka pengguna dan menilai kesesuaiannya dengan serangkaian

BAB DESAIN INKLUSIF, AKSESIBILITAS, DAN ETIKA DALAM HCI

A. Desain Inklusif (*Inclusive Design*)

Desain Inklusif (Inclusive Design) adalah pendekatan desain yang mempertimbangkan keragaman manusia dalam segala bentuknya (usia, kemampuan, latar belakang budaya, bahasa, status sosial ekonomi, dll.) untuk menciptakan produk yang dapat digunakan oleh sebanyak mungkin orang, tanpa perlu adaptasi khusus. Ini melampaui konsep aksesibilitas tradisional yang sering kali berfokus pada disabilitas, untuk mencakup spektrum yang lebih luas dari variasi manusia. Tujuan desain inklusif adalah untuk menghilangkan hambatan dan memastikan partisipasi penuh bagi semua orang.

Prinsip-prinsip utama desain inklusif meliputi:

- 1. Menyediakan Pilihan: Memberikan berbagai cara bagi pengguna untuk berinteraksi dengan sistem atau mengakses informasi.
- 2. Fleksibilitas: Desain yang dapat disesuaikan dengan preferensi dan kemampuan individu.
- 3. Toleransi Kesalahan: Meminimalkan konsekuensi dari kesalahan pengguna dan memungkinkan pemulihan yang mudah.
- 4. Persepsi yang Jelas: Memastikan informasi dipersepsikan oleh semua indra yang relevan dan dalam berbagai kondisi lingkungan.
- 5. Penggunaan yang Mudah: Antarmuka yang intuitif dan mudah dipelajari oleh berbagai pengguna.

TEKNOLOGI BARU, STUDI KASUS, DAN ARAH MASA DEPAN HCI

A. HCI dalam Era Komputasi Ubiquitous dan Pervasive

Komputasi ubiquitous (di mana-mana) dan pervasive (menyeluruh) mengacu pada visi di mana teknologi komputasi terintegrasi secara mulus ke dalam lingkungan sehari- hari, menjadi tidak terlihat namun selalu tersedia. Ini melampaui desktop dan perangkat mobile, mencakup sensor, perangkat IoT (Internet of Things), dan lingkungan cerdas. Dalam era ini, tantangan HCI bergeser dari interaksi dengan perangkat diskrit menjadi interaksi dengan lingkungan yang responsif dan cerdas. Implikasi untuk HCI:

- 1. Interaksi yang Tidak Terlihat: Desain harus memungkinkan interaksi yang intuitif dan alami tanpa memerlukan perhatian eksplisit dari pengguna. Teknologi harus menyatu dengan lingkungan, seperti termostat pintar yang menyesuaikan suhu secara otomatis.
- 2. Konteks-Awareness: Sistem harus mampu memahami dan beradaptasi dengan konteks pengguna (lokasi, aktivitas, preferensi, kondisi fisik). Ini memerlukan pengumpulan dan interpretasi data sensor yang canggih untuk memberikan layanan yang relevan secara proaktif.
- 3. Privasi dan Keamanan: Mengelola data pribadi yang dikumpulkan oleh sensor dan perangkat yang tersebar menjadi sangat krusial. Desainer harus membangun kepercayaan dan memberikan kontrol kepada pengguna atas data mereka, mengingat sifat data yang sangat personal.

GLOSARIUM ISTILAH

ISTILAH	DEFINISI
Actor-Network	Pendekatan yang melihat manusia dan non-
Theory (ANT)	manusia sebagai aktor dalam jaringan
Theory (ANT)	interaksi teknologi dan sosial.
	Teori yang menganalisis aktivitas manusia
Activity Theory	sebagai sistem yang melibatkan subjek,
(Teori Aktivitas)	objek, alat, komunitas, aturan, dan
	pembagian kerja.
	Petunjuk visual dalam desain yang
Affordance	menunjukkan cara penggunaan objek,
	seperti tombol yang tampak bisa ditekan.
Analisis Sarana-	Strategi pemecahan masalah dengan
Tujuan	mengurangi perbedaan antara keadaan saat
	ini dan tujuan yang diinginkan.
Atensi	Fokus kognitif pada informasi penting
(Attention)	dalam antarmuka, memengaruhi efisiensi
	pengguna.
	Navigasi yang menunjukkan jalur halaman
Breadcrumbs	yang dilalui pengguna dalam struktur situs
	atau aplikasi.
Cognitive Load	Beban mental pengguna saat memproses
(Beban Kognitif)	informasi, terdiri dari intrinsik, ekstrinsik,
	dan germane.
Cognitive	Metode evaluasi usabilitas dengan
Walkthrough	mensimulasikan alur tugas pengguna
	pemula.
Conceptual	Model sistem sebagaimana dirancang dan
Model	ditampilkan kepada pengguna untuk
	memudahkan pemahaman. Pendekatan desain yang menekankan
Design	, ,
Emosional	respons emosional pengguna seperti kepuasan dan keterikatan.
	Repuasan dan Retematan.

ISTILAH	DEFINISI
Feedback	Respons sistem terhadap tindakan
(Umpan Balik)	pengguna untuk membantu evaluasi dan
(Onipan bank)	koreksi.
Flow (Teori	Keadaan optimal saat pengguna tenggelam
Aliran)	dalam aktivitas interaksi yang
	menyenangkan dan lancar.
GOMS	Model interaksi terdiri dari Goals,
	Operators, Methods, dan Selection Rules.
	Prinsip persepsi visual seperti kedekatan
Gestalt (Prinsip)	dan kesamaan yang digunakan dalam
	desain antarmuka.
Heuristic	Evaluasi usabilitas berdasarkan prinsip
Evaluation	desain umum (heuristik) seperti visibilitas
	dan konsistensi.
HIP (Human	Model yang menjelaskan proses
Information	penerimaan, penyimpanan, dan respons
Processing)	manusia terhadap informasi.
Homing	Gerakan tangan dari keyboard ke mouse
	atau sebaliknya dalam model KLM.
T (T1)	Simbol grafis representatif dalam
Icon (Ikon)	antarmuka untuk mempercepat pengenalan
	dan pemahaman fungsi.
Interaction	Model Abowd dan Beale yang memetakan
Framework	alur komunikasi antara pengguna dan
	sistem. Model prediksi waktu tugas berdasarkan
Keystroke-Level	urutan tindakan dasar pengguna seperti
Model (KLM)	klik, ketik, dll.
	Kapasitas mental pengguna untuk
Memori	menyimpan informasi, termasuk memori
Wichioff	jangka pendek dan panjang.
	Representasi internal pengguna tentang
Mental Model	cara kerja sistem, berdasarkan pengalaman
Michigal Miodel	dan persepsi.
	auri persepsi.

TENTANG PENULIS

Dwi Ajiatmo, lahir di Tegal, Jawa Tengah. Penulis Dosen di Program Studi Teknik Elektro Fakultas Teknik, Mengajar di Teknik Mesin untuk mata kuliah *Konversi Energi*, Teknik Informatika untuk mata kuliah *Human Computer Interaction (HCI)* dan Pendidikan Agama Islam untuk mata kuliah *Information Computer*

Technology of education (ICT Pembelajaran) Universitas Darul Ulum (Undar). Penulis menyelesaikan Studi S1 Program Studi Teknik Elektro Fakultas Teknik Undar pada tahun 1996, menyelesaikan studi S2 di Program Studi Teknik Elektro Fakultas Teknik UGM, Yogyakarta pada tahun 2004, menyelesaikan studi S3 di Program Studi Teknik Elektro Fakultas Teknik Elektro dan Informatika Cerdas - ITS Surabaya di tahun 2021. Bidang yang ditekuni Kendaraan Listrik, Power Sistem, Renewable Energy, Artificial Intelligence dan Maximum Power Point Tracking (MPPT). Sampai sekarang penulis masih aktif mengajar, Penelitian dan Pengabdian Masyarakat sesuai bidang keahliannya. Identitas Online Penulis: 57193870471 ID: 5990314. ID: Sinta GS ID: Scopus pWHBDI4AAAAJ&hl, Email: ajiatmo@gmail.com

Winarti, lahir di Magetan pada tahun 1967, Jawa Timur. Penulis Dosen di Fakultas Tenik Program Studi Teknik Informatika. Mengajar mata kuliah Matematika I, Matematika II, Sistem Digital, Praktikum Sistem Digital, Mikroprosesor, Praktikum Mikroprosesor, Struktur Data, Human Computer Interaction (HCI), Sistem Pakar, dan Pemrograman Phyton

Universitas Darul Ulum (Undar). Penulis menyelesaikan Studi S1 Program Studi Teknik Informatika & Komputer Sekolah Tinggi Teknik Informatika & Komputer Indonesia (STIKI) – Malang pada tahun 1999, menyelesaikan studi S2 Program Studi Teknik Informasi Sekolah Tinggi Teknik Surabaya (STTS -Surabaya), pada

tahun 2018. Bidang yang ditekuni : Database, User Interface, Pemrograman dan Pembelajaran. Sampai sekarang penulis masih aktif mengajar, Penelitian dan Pengabdian Masyarakat sesuai bidang keahliannya. Identitas Online Penulis : Sinta ID: 6659776, GS ID: cNWC3aUAAAAJ&hl, Email: winartiundarstts@gmail.com

TENTANG EDITOR

Henny Dwijayani, memulai karir sebagai Dosen Fakultas Ekonomi di Universitas Darul Ulum dan Tutor Universitas Terbuka sampai sekarang. Pendidikan yang pernah ditempuh antara lain S1 & S2 Universitas Darul Ulum Jombang dan S3 Universitas Brawijaya Malang. Mempunyai sertifikat kompetensi bidang penulisan buku dan paper serta telah

menghasilkan beberapa buku maupun sebagai editor. Diantara buku referensi yang telah terbit antara lain Manajemen Keuangan, Statistika 1 dan Sinergi Pengelolaan Ekonomi. Disamping sebagai penulis buku juga sebagai editor salah satunya buku Statistik dan Probabilitas. Selain aktif dalam menulis buku, Editor juga aktif dalam forum ilmiah baik di dalam maupun di luar institusi. Sinta ID: 6150608; Google scholar: WHj4uSsAAAAJ&hl; Email: hennydwija@gmail.com